Soul-Surveyor: Mental Health Monitoring using Business Intelligence and Sentiment Analysis



EOI: 10.11242/viva-tech.01.07.025

Download Full Text here



Citation

Abhidnya Patil, Siddhesh Panchal, Dhanashri Patil, Prof. Bhavika Thakur, "Soul-Surveyor: Mental Health Monitoring using Business Intelligence and Sentiment Analysis", VIVA-IJRI Volume 1, Issue 7, Article COMP_25, pp. 1-7, 2024. Published by Computer Engineering Department, VIVA Institute of Technology, Virar, India.

Abstract

The growing concerns about mental health have prompted the development of innovative systems for monitoring mental well-being. This research proposes a system called Soul-Surveyor, which combines business intelligence and sentiment analysis to track and predict mental health status. By analyzing user-generated data from social media and other online platforms, the system aims to provide real-time insights into mental health patterns and offer interventions to improve emotional well-being. The use of machine learning techniques, such as Bi-LSTM and sentiment analysis models, enhances the accuracy of predictions.

Keywords

Mental Health, Business Intelligence, Sentiment Analysis, Emotional Health, Social Media Analysis, Bi-LSTM, BERT Model, Predictive Analytics, Mental Health Monitoring.

References

  1. K. Zeberga, M. Attique, B. Shah, F. Ali, Y. Z. Jembre, Tae-Sun Chung, “A Novel Text Mining Approach for Mental Health Prediction Using Bi-LSTM and BERT Model”, Computational Intelligence and Neuroscience, Volume 2022, 2022.
  2. R. Dixit, G. Chawla, I. Bajaj, “Mental Health Monitoring using Sentiment Analysis”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8(4), July-August-2022, 324-330.
  3. F. Benrouba, R. Boudour, “Emotional Sentiment Analysis of Social Media content for Mental Health Safety”, Springer Nature 2021 LATEX template, October 2022.
  4. H. Yu, J. Bae, J. Choi, H. Kim, “LUX: Smart Mirror with Sentiment Analysis for Mental Comfort”, MDPI Sensors 2021, 21(9), 3092.
  5. S. Yang, “Sentiment Analysis of COVID-19 on Weibo text using optimized Bi-LSTM model”, Springer Nature 2021 LATEX template, February 2023.
  6. I. F. H. Rachman, “Twitter Sentiment Analysis of Covid-19 Using Term Weighting TF-IDF And Logistic Regression”, Information Technology International Seminar (ITIS), Surabaya, Indonesia, October 14-16, 2020.
  7. D.A. Musleh, T. A. Alkhales, R. A. Almakki, S. E. Alnajim, S. K. Almarshad, R. S. Alhasaniah, Sumayh S. Aljameel and A. A. Almuqhim, “Twitter Arabic Sentiment Analysis to Detect Depression Using Machine Learning”, Computers, Materials & Continua, 71(2) 2022.
  8. B. S. Ainapure, R. N. Pise, P. Reddy, B. Appasani, A. Srinivasulu, M. S. K. N. Bizon, “Sentiment Analysis of COVID-19 Tweets Using Deep Learning and Lexicon-Based Approaches”, MDPI Sustainability 2023, 15(3), 2573.
  9. C. V., J. J. Macrohon, X. A. Inbaraj, Jyh-Horng Jeng1 and Jer-Guang Hsieh, “Twitter Sentiment Analysis towards COVID-19 Vaccines in the Philippines Using Naïve Bayes”, MDPI Information 2021, 12(5), 204.
  10. P. Rane, K. Bhansali, Prof. Sindhu Nair, “Sentiment Analysis to Improve Emotional Health of User”, International Journal of Computer Applications (0975 – 8887), 120(1), June 2015.
  11. S. Sharma, M. Diwakar, K. Joshi, P. Singh, S. V. Akram, A. Gehlot, “A Critical Review on Sentiment Analysis Techniques”, 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), 2022, ResearchGate, 741-746.
  12. S. T. Sadasivuni, Y. Zhang, “Analyzing Tweets to Discover Twitter Users Mental Health Status by a Word-Frequency Method”, 2019 IEEE International Conference on Intelligent Systems and Green Technology (ICISGT), 5-8.
  13. C. Zucco, B. Calabrese, M. Cannataro, “Sentiment Analysis and Affective Computing for depression monitoring”, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1988-1995.
  14. M. M. Aldarwish, H. F. Ahmed, “Predicting Depression Levels Using Social Media Posts”, 2017 IEEE 13th International Symposium on Autonomous Decentralized Systems, 277-280.
  15. J. Hussain1, M. Ali, H. S. M. Bilal, M. Afzal, H. F. Ahmad, O. Banos, and S. Lee, "SNS Based Predictive Model for Depression", Springer International Publishing Switzerland 2015, 9102, pp. 349–354.