Soul-Surveyor: Mental Health Monitoring using Business Intelligence and Sentiment Analysis
EOI: 10.11242/viva-tech.01.07.025
Citation
Abhidnya Patil, Siddhesh Panchal, Dhanashri Patil, Prof. Bhavika Thakur, "Soul-Surveyor: Mental Health Monitoring using Business Intelligence and Sentiment Analysis", VIVA-IJRI Volume 1, Issue 7, Article COMP_25, pp. 1-7, 2024. Published by Computer Engineering Department, VIVA Institute of Technology, Virar, India.
Abstract
The growing concerns about mental health have prompted the development of innovative systems for monitoring mental well-being. This research proposes a system called Soul-Surveyor, which combines business intelligence and sentiment analysis to track and predict mental health status. By analyzing user-generated data from social media and other online platforms, the system aims to provide real-time insights into mental health patterns and offer interventions to improve emotional well-being. The use of machine learning techniques, such as Bi-LSTM and sentiment analysis models, enhances the accuracy of predictions.
Keywords
Mental Health, Business Intelligence, Sentiment Analysis, Emotional Health, Social Media Analysis, Bi-LSTM, BERT Model, Predictive Analytics, Mental Health Monitoring.
References
- K. Zeberga, M. Attique, B. Shah, F. Ali, Y. Z. Jembre, Tae-Sun Chung, “A Novel Text Mining Approach for Mental Health Prediction Using Bi-LSTM and BERT Model”, Computational Intelligence and Neuroscience, Volume 2022, 2022.
- R. Dixit, G. Chawla, I. Bajaj, “Mental Health Monitoring using Sentiment Analysis”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 8(4), July-August-2022, 324-330.
- F. Benrouba, R. Boudour, “Emotional Sentiment Analysis of Social Media content for Mental Health Safety”, Springer Nature 2021 LATEX template, October 2022.
- H. Yu, J. Bae, J. Choi, H. Kim, “LUX: Smart Mirror with Sentiment Analysis for Mental Comfort”, MDPI Sensors 2021, 21(9), 3092.
- S. Yang, “Sentiment Analysis of COVID-19 on Weibo text using optimized Bi-LSTM model”, Springer Nature 2021 LATEX template, February 2023.
- I. F. H. Rachman, “Twitter Sentiment Analysis of Covid-19 Using Term Weighting TF-IDF And Logistic Regression”, Information Technology International Seminar (ITIS), Surabaya, Indonesia, October 14-16, 2020.
- D.A. Musleh, T. A. Alkhales, R. A. Almakki, S. E. Alnajim, S. K. Almarshad, R. S. Alhasaniah, Sumayh S. Aljameel and A. A. Almuqhim, “Twitter Arabic Sentiment Analysis to Detect Depression Using Machine Learning”, Computers, Materials & Continua, 71(2) 2022.
- B. S. Ainapure, R. N. Pise, P. Reddy, B. Appasani, A. Srinivasulu, M. S. K. N. Bizon, “Sentiment Analysis of COVID-19 Tweets Using Deep Learning and Lexicon-Based Approaches”, MDPI Sustainability 2023, 15(3), 2573.
- C. V., J. J. Macrohon, X. A. Inbaraj, Jyh-Horng Jeng1 and Jer-Guang Hsieh, “Twitter Sentiment Analysis towards COVID-19 Vaccines in the Philippines Using Naïve Bayes”, MDPI Information 2021, 12(5), 204.
- P. Rane, K. Bhansali, Prof. Sindhu Nair, “Sentiment Analysis to Improve Emotional Health of User”, International Journal of Computer Applications (0975 – 8887), 120(1), June 2015.
- S. Sharma, M. Diwakar, K. Joshi, P. Singh, S. V. Akram, A. Gehlot, “A Critical Review on Sentiment Analysis Techniques”, 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), 2022, ResearchGate, 741-746.
- S. T. Sadasivuni, Y. Zhang, “Analyzing Tweets to Discover Twitter Users Mental Health Status by a Word-Frequency Method”, 2019 IEEE International Conference on Intelligent Systems and Green Technology (ICISGT), 5-8.
- C. Zucco, B. Calabrese, M. Cannataro, “Sentiment Analysis and Affective Computing for depression monitoring”, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1988-1995.
- M. M. Aldarwish, H. F. Ahmed, “Predicting Depression Levels Using Social Media Posts”, 2017 IEEE 13th International Symposium on Autonomous Decentralized Systems, 277-280.
- J. Hussain1, M. Ali, H. S. M. Bilal, M. Afzal, H. F. Ahmad, O. Banos, and S. Lee, "SNS Based Predictive Model for Depression", Springer International Publishing Switzerland 2015, 9102, pp. 349–354.