Extractive spectrophotometric determination of Co(II) using 5-Chlorosalicylaldehyde thiosemicarbazone
EOI: 10.11242/viva-tech.01.05.001
Citation
Priyanka Rodrigues, Sunetra Chaudhary, "Extractive spectrophotometric determination of Co(II) using 5-Chlorosalicylaldehyde thiosemicarbazone ", VIVA-IJRI Volume 1, Issue 7, Article 1, pp. 1-6, 2024. Published by Humanities and Applied Sciences, VIVA Institute of Technology, Virar, India.
Abstract
The complex of 5-Chlorosalicylaldehyde thiosemicarbazone (CSTSC) and Co(II) has been quantitatively extracted in butyl acetate in the pH range of 4.6–5.2 after equilibrating for 60 sec. Up to 6.0 μg mL-1 concentration of Co(II), the complex of 5-Chlorosalicylaldehyde thiosemicarbazone with Co(II) in butyl acetate follows Beer’s law, with its maximum absorbance occurring at 425 nm. By employing the Jobs continuous variation method, the composition 1:2 has been determined for the Co(II)-CSTSC complex. The extracted complex remained stable for more than 24 hours. 6.637 X 10-3 μg cm-2 was determined to be Sandell's sensitivity, whereas 0.887 X 104 L mol-1 cm-1 was the molar absorptivity. Synthetic samples have been effectively analysed using this method.
Keywords
Butyl acetate, extraction, Cobalt, CSTSC, Spectrophotometry.
References
- J. Montaña, F. Valente, A. Alonso, J. Lomillos, R. Robles, M. Alonso, “Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant”, Animals, 10(10), 2020 , pp. 1855.
- M. Safavi, F. Walsh, Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits, Surface and Coatings Technology, 422, 2021, pp.127564.
- S. Gupta, R. Fernandes, R. Patel, M. Spreitzer, N. Patel, “A review of cobalt-based catalysts for sustainable energy and environmental applications”, Applied Catalysis A: General, 661, 2023, pp. 119254https://doi.org/10.1016/j.apcata.2023.119254
- E. Yazıcı, M. Fırat, D. Chormey, E. Bakırdere, S. Bakırdere, “An accurate determination method for cobalt in sage tea and cobalamin: Slotted quartz tube-flame atomic absorption spectrometry after preconcentration with switchable liquid-liquid microextraction using a Schiff base”, Food Chemistry, 302, 2020, pp.125336.
- T. Borahan, B. Zaman, B. Polat, E. Bakırdere, S. Bakırdere, “An accurate and sensitive effervescence-assisted liquid phase microextractionmethod for the determination of cobalt after a Schiff base complexation by slotted quartz tube-flame atomic absorption spectrophotometry in urine samples”, Anal. Methods, 13 (5), 2021, pp. 703-711https://doi.org/10.1039/D0AY02264K
- A. Zalov, Kerim Kuliev, Sevil Shiralieva, Shafa Mammadova, Konul Aliyeva, Saliga Gahramanova, “Extraction-photometric determination of cobalt (II) with 5- (4-Hydroxybenzylidene) -2,4- tiazolidindion in different objects”, Journal of Pharmacognosy and Phytochemistry, 8 (1), 2019, pp. 2612-2616.
- D. Widowati, F. Kurniawan, S. Ramadhan, “Analysis of Cobalt(II) and Nickel(II) in Water Medium using Voltammetry Techniques”, Chemistry and Materials, 2(2), 2023, pp. 35-40https://doi.org/10.56425/cma.v2i2.52
- P. Kargarghomsheh, F. Tooryan, G. Sharifiarab, M. Moazzen, N. Shariatifar, M. Arabameri, “Evaluation of Trace Elements in Coffee and Mixed Coffee Samples Using ICP-OES Method”, Biol. Trace Elem. Res., 8, 2023.https://doi.org/10.1007/s12011-023-03795-w
- K. Petrova, V. Baranovskaya, N. Korotkova, “Direct inductively coupled plasma optical emission spectrometry for analysis of waste samarium-cobalt magnets”, Arabian Journal of Chemistry, 15(1), 2022, pp.103501.https://doi.org/10.1016/j.arabjc.2021.103501
- E. Tanvir, K. Whitfield, J. Ng, P. Shaw, “Development and Validation of an ICP-MS Method and Its Application to Determine Multiple Trace Elements in Small Volumes of Whole Blood and Plasma”, Journal of Analytical Toxicology, 44(9), 2020, pp.1036-1046,https://doi.org/10.1093/jat/bkaa033
- H. Kim, G. Lee, G. Pyo, E. Kwon, K. Myung, S. Cheong, “Nickel, cobalt, and chromium in nail sticker and tip products in Korea”,Contact Dermatitis, 88(5), 2023, pp. 389-394,https://doi.org/10.1111/cod.14279
- L. Subramanyam Sarma, J. Rajesh Kumar, C. Jaya Kumar, A. Varada Reddy, “A Sensitive Extractive Spectrophotometric Determination of Cobalt (II) in Real Samples Using Pyridoxal-4-phenyl-3-thiosemicarbozone”, Analytical Letters, 36(3), 2003, pp. 605-618,https://doi.org/10.1081/AL-120018251
- S. Aliyev, E. Suleymanova, L. Magarramova, S. Ibrahimova , A. Zalov, “Liquid-Liquid Extraction and Spectrophotometric Characterization of A New Ternary Ion-Association Complex of Cobalt(II)”, International Journal of Innovative Science, Engineering & Technology, 5(8), 2018,52-62.
- S. Khan, A. Asiri, K. Al-Amry, M. Malik, “Synthesis, Characterization, Electrochemical Studies, and In Vitro Antibacterial Activity of Novel Thiosemicarbazone and Its Cu(II), Ni(II), and Co(II) Complexes”, The Scientific World Journal, 2014, 2014, 592375.https://doi.org/10.1155/2014/592375
- E. Çakmakçı, E. Subaşı, E. Öztürk, A. Şahiner, B. Yüksel, “Cobalt(II), nickel(II), palladium(II) and zinc(II) metallothiosemicarbazones: Synthesis, characterization, X-ray structures and biological activity”, Inorganica Chimica Acta, 551, 2023,121462.https://doi.org/10.1016/j.ica.2023.121462
- D. Martins, R. Souza, Marjorie Caroline L. Freire, N. Mesquita, I. Santos, D. Oliveira, N. Junior, R. Paiva, M. Harris, C. Oliveira, G. Oliva, A. Jardim, “Insights into the role of the cobalt (III)-thiosemicarbazone complex as a potential inhibitor of the Chikungunya virus nsP4”, J Biol. Inorg. Chem., 28, 2023, pp. 101–115.https://doi.org/10.1007/s00775-022-01974-z
- L. Fernandes, J. Silva, D. Martins, M. Santiago, C. Martins, A. Jardim,G. Oliveira,M. Pivatto, R. Souza, E. Franca, V. Deflon, A. Machado, C. Oliveira,“Fragmentation Study, Dual Anti-Bactericidal and Anti-Viral Effects and Molecular Docking of Cobalt(III) Complexes”, Int. J. Mol. Sci., 21(21), 2020, 8355, pp.01-17https://doi.org/10.3390/ijms21218355
- K. Melha, “In-vitro antibacterial, antifungal activity of some transition metal complexes of thiosemicarbazone Schiff base (HL) derived from N4-(7′-chloroquinolin-4′-ylamino) thiosemicarbazide”, Journal of Enzyme Inhibition and Medicinal Chemistry, 23(4), 2008,pp. 493-503,10.1080/14756360701631850
- R. Alcaraz, P. Muñiz, M. Cavia, Ó. Palacios, K. Samper, R. García, A. Pérez, J. Tojal, C. Girón, “Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress”, Journal of Inorganic Biochemistry, 206, 2020, pp. 110993, https://doi.org/10.1016/j.jinorgbio.2020.110993
- A. Paden King, Hendryck A. Gellineau, Jung-Eun Ahn, Samantha N. MacMillan, Justin J. Wilson, “Bis(thiosemicarbazone) Complexes of Cobalt (III). “Synthesis, Characterization, and Anticancer Potential”, Inorg. Chem., 56(11), 2017, pp. 6609–6623https://doi.org/10.1021/acs.inorgchem.7b00710
- M. Sobiesiak, M. Cieślak, K. Królewska, J. Kaźmierczak-Barańska, B. Pasternak, E. Budzisz, New J. Chem., 40(11), 2016, 9761-9767
- G. Jeffery, J. Bassett, J. Mendham, R. Denney, Vogel’s textbook of quantitative chemical analysis, Longman, Green, 463, 1961