Extractive spectrophotometric determination of Co(II) using 5-Chlorosalicylaldehyde thiosemicarbazone



EOI: 10.11242/viva-tech.01.05.001

Download Full Text here



Citation

Priyanka Rodrigues, Sunetra Chaudhary, "Extractive spectrophotometric determination of Co(II) using 5-Chlorosalicylaldehyde thiosemicarbazone ", VIVA-IJRI Volume 1, Issue 7, Article 1, pp. 1-6, 2024. Published by Humanities and Applied Sciences, VIVA Institute of Technology, Virar, India.

Abstract

The complex of 5-Chlorosalicylaldehyde thiosemicarbazone (CSTSC) and Co(II) has been quantitatively extracted in butyl acetate in the pH range of 4.6–5.2 after equilibrating for 60 sec. Up to 6.0 μg mL-1 concentration of Co(II), the complex of 5-Chlorosalicylaldehyde thiosemicarbazone with Co(II) in butyl acetate follows Beer’s law, with its maximum absorbance occurring at 425 nm. By employing the Jobs continuous variation method, the composition 1:2 has been determined for the Co(II)-CSTSC complex. The extracted complex remained stable for more than 24 hours. 6.637 X 10-3 μg cm-2 was determined to be Sandell's sensitivity, whereas 0.887 X 104 L mol-1 cm-1 was the molar absorptivity. Synthetic samples have been effectively analysed using this method.

Keywords

Butyl acetate, extraction, Cobalt, CSTSC, Spectrophotometry.

References

  1. J. Montaña, F. Valente, A. Alonso, J. Lomillos, R. Robles, M. Alonso, “Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant”, Animals, 10(10), 2020 , pp. 1855.
  2. M. Safavi, F. Walsh, Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits, Surface and Coatings Technology, 422, 2021, pp.127564.
  3. S. Gupta, R. Fernandes, R. Patel, M. Spreitzer, N. Patel, “A review of cobalt-based catalysts for sustainable energy and environmental applications”, Applied Catalysis A: General, 661, 2023, pp. 119254https://doi.org/10.1016/j.apcata.2023.119254
  4. E. Yazıcı, M. Fırat, D. Chormey, E. Bakırdere, S. Bakırdere, “An accurate determination method for cobalt in sage tea and cobalamin: Slotted quartz tube-flame atomic absorption spectrometry after preconcentration with switchable liquid-liquid microextraction using a Schiff base”, Food Chemistry, 302, 2020, pp.125336.
  5. T. Borahan, B. Zaman, B. Polat, E. Bakırdere, S. Bakırdere, “An accurate and sensitive effervescence-assisted liquid phase microextractionmethod for the determination of cobalt after a Schiff base complexation by slotted quartz tube-flame atomic absorption spectrophotometry in urine samples”, Anal. Methods, 13 (5), 2021, pp. 703-711https://doi.org/10.1039/D0AY02264K
  6. A. Zalov, Kerim Kuliev, Sevil Shiralieva, Shafa Mammadova, Konul Aliyeva, Saliga Gahramanova, “Extraction-photometric determination of cobalt (II) with 5- (4-Hydroxybenzylidene) -2,4- tiazolidindion in different objects”, Journal of Pharmacognosy and Phytochemistry, 8 (1), 2019, pp. 2612-2616.
  7. D. Widowati, F. Kurniawan, S. Ramadhan, “Analysis of Cobalt(II) and Nickel(II) in Water Medium using Voltammetry Techniques”, Chemistry and Materials, 2(2), 2023, pp. 35-40https://doi.org/10.56425/cma.v2i2.52
  8. P. Kargarghomsheh, F. Tooryan, G. Sharifiarab, M. Moazzen, N. Shariatifar, M. Arabameri, “Evaluation of Trace Elements in Coffee and Mixed Coffee Samples Using ICP-OES Method”, Biol. Trace Elem. Res., 8, 2023.https://doi.org/10.1007/s12011-023-03795-w
  9. K. Petrova, V. Baranovskaya, N. Korotkova, “Direct inductively coupled plasma optical emission spectrometry for analysis of waste samarium-cobalt magnets”, Arabian Journal of Chemistry, 15(1), 2022, pp.103501.https://doi.org/10.1016/j.arabjc.2021.103501
  10. E. Tanvir, K. Whitfield, J. Ng, P. Shaw, “Development and Validation of an ICP-MS Method and Its Application to Determine Multiple Trace Elements in Small Volumes of Whole Blood and Plasma”, Journal of Analytical Toxicology, 44(9), 2020, pp.1036-1046,https://doi.org/10.1093/jat/bkaa033
  11. H. Kim, G. Lee, G. Pyo, E. Kwon, K. Myung, S. Cheong, “Nickel, cobalt, and chromium in nail sticker and tip products in Korea”,Contact Dermatitis, 88(5), 2023, pp. 389-394,https://doi.org/10.1111/cod.14279
  12. L. Subramanyam Sarma, J. Rajesh Kumar, C. Jaya Kumar, A. Varada Reddy, “A Sensitive Extractive Spectrophotometric Determination of Cobalt (II) in Real Samples Using Pyridoxal-4-phenyl-3-thiosemicarbozone”, Analytical Letters, 36(3), 2003, pp. 605-618,https://doi.org/10.1081/AL-120018251
  13. S. Aliyev, E. Suleymanova, L. Magarramova, S. Ibrahimova , A. Zalov, “Liquid-Liquid Extraction and Spectrophotometric Characterization of A New Ternary Ion-Association Complex of Cobalt(II)”, International Journal of Innovative Science, Engineering & Technology, 5(8), 2018,52-62.
  14. S. Khan, A. Asiri, K. Al-Amry, M. Malik, “Synthesis, Characterization, Electrochemical Studies, and In Vitro Antibacterial Activity of Novel Thiosemicarbazone and Its Cu(II), Ni(II), and Co(II) Complexes”, The Scientific World Journal, 2014, 2014, 592375.https://doi.org/10.1155/2014/592375
  15. E. Çakmakçı, E. Subaşı, E. Öztürk, A. Şahiner, B. Yüksel, “Cobalt(II), nickel(II), palladium(II) and zinc(II) metallothiosemicarbazones: Synthesis, characterization, X-ray structures and biological activity”, Inorganica Chimica Acta, 551, 2023,121462.https://doi.org/10.1016/j.ica.2023.121462
  16. D. Martins, R. Souza, Marjorie Caroline L. Freire, N. Mesquita, I. Santos, D. Oliveira, N. Junior, R. Paiva, M. Harris, C. Oliveira, G. Oliva, A. Jardim, “Insights into the role of the cobalt (III)-thiosemicarbazone complex as a potential inhibitor of the Chikungunya virus nsP4”, J Biol. Inorg. Chem., 28, 2023, pp. 101–115.https://doi.org/10.1007/s00775-022-01974-z
  17. L. Fernandes, J. Silva, D. Martins, M. Santiago, C. Martins, A. Jardim,G. Oliveira,M. Pivatto, R. Souza, E. Franca, V. Deflon, A. Machado, C. Oliveira,“Fragmentation Study, Dual Anti-Bactericidal and Anti-Viral Effects and Molecular Docking of Cobalt(III) Complexes”, Int. J. Mol. Sci., 21(21), 2020, 8355, pp.01-17https://doi.org/10.3390/ijms21218355
  18. K. Melha, “In-vitro antibacterial, antifungal activity of some transition metal complexes of thiosemicarbazone Schiff base (HL) derived from N4-(7′-chloroquinolin-4′-ylamino) thiosemicarbazide”, Journal of Enzyme Inhibition and Medicinal Chemistry, 23(4), 2008,pp. 493-503,10.1080/14756360701631850
  19. R. Alcaraz, P. Muñiz, M. Cavia, Ó. Palacios, K. Samper, R. García, A. Pérez, J. Tojal, C. Girón, “Thiosemicarbazone-metal complexes exhibiting cytotoxicity in colon cancer cell lines through oxidative stress”, Journal of Inorganic Biochemistry, 206, 2020, pp. 110993, https://doi.org/10.1016/j.jinorgbio.2020.110993
  20. A. Paden King, Hendryck A. Gellineau, Jung-Eun Ahn, Samantha N. MacMillan, Justin J. Wilson, “Bis(thiosemicarbazone) Complexes of Cobalt (III). “Synthesis, Characterization, and Anticancer Potential”, Inorg. Chem., 56(11), 2017, pp. 6609–6623https://doi.org/10.1021/acs.inorgchem.7b00710
  21. M. Sobiesiak, M. Cieślak, K. Królewska, J. Kaźmierczak-Barańska, B. Pasternak, E. Budzisz, New J. Chem., 40(11), 2016, 9761-9767
  22. G. Jeffery, J. Bassett, J. Mendham, R. Denney, Vogel’s textbook of quantitative chemical analysis, Longman, Green, 463, 1961