Data Warehouse and Data Mining for Business Intelligence



EOI: 10.11242/viva-tech.01.05.001

Download Full Text here



Citation

Nitesh Kumar,Ashish Gupta,Mitesh Sate,"Data Warehouse and Data Mining for Business Intelligence", VIVA-IJRI Volume 1, Issue 7, Article 1, pp. 1-14, 2024. Published by Master of Computer Application Department, VIVA Institute of Technology, Virar, India.

Abstract

Business Intelligence, Data Mining, Data Warehouse, Decision-Making, Predictive Analytics.

References

  1. Inmon, W. H., & Hackathorn, R. D. (2007). Using the data warehouse. Wiley.
  2. Lahdenmaki, J., & Lehtonen, T. (2014). Implementing Analytics: A Blueprint for Design, Development, and Adoption. FT Press.
  3. Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling (3rd ed.). Wiley.
  4. Turban, E., Sharda, R., Delen, D., & King, D. (2019). Business Intelligence and Analytics: Systems for Decision Support (11th ed.). Pearson.
  5. Power, D. J. (2002). Decision Support Systems: Concepts and Resources for Managers. Greenwood Publishing Group.
  6. Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.
  7. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer.
  8. I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques (4th ed.). Morgan Kaufmann.
  9. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data Clustering: A Review. ACM Computing Surveys, 31(3), 264-323.
  10. Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining Association Rules between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, 207-216.
  11. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys, 41(3), 1-58.
  12. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.
  13. Larose, D. T. (2014). Discovering Knowledge in Data: An Introduction to Data Mining (2nd ed.). Wiley.
  14. Usman, Muhammad & Pears, R.. (2010)Integration of Data Mining and Data Warehousing: A Practical Methodology.
  15. Paulraj, P. (2016). Data Warehousing Fundamentals for IT Professionals (2nd ed.). Wiley.